
www.elsevier.com/locate/foodchem

Food Chemistry 101 (2007) 485–491

Food
Chemistry
Evaluation of different storage conditions of extra virgin olive oils
with an innovative recognition tool built by means of electronic

nose and electronic tongue

M.S. Cosio a,*, D. Ballabio a, S. Benedetti a, C. Gigliotti b

a Department of Food Science and Technologies, University of Milan, Via Celoria 2, 20133 Milan, Italy
b Department of Biomedical Sciences and Biotechnologies, University of Brescia, Viale Europa 11, 25123 Brescia, Italy

Received 19 December 2005; accepted 6 February 2006
Abstract

In the present work, the oxidation of extra virgin olive oils was considered at different storage periods and conditions. The oxidation is
usually evaluated by applying an accelerated thermoxidation, while in this case real storage conditions were used. In order to study the
differences of the storage situations, multivariate statistical analysis was applied on classical chemical determinations, electronic nose and
electronic tongue responses.

Results showed how the electronic nose was enough to define the extra virgin olive oil oxidation and appeared to be able to describe
the different storage conditions, while classical chemical parameters and electronic tongue were not relevant. In fact, the classification
model built by means of linear discriminant analysis (LDA) gave an equal classification performance by considering all the variables
or just the electronic nose sensor responses. Compared to classical methods, this new approach could represent an alternative and inno-
vative tool for faster and cheaper evaluation of extra virgin oil oxidation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Extra virgin oil is properly processed from fresh and
mature high quality olives (Olea europea L.) and presents
a complex flavour which is greatly liked by native consum-
ers and internationally appreciated by gourmets (Kiritsakis
& Min, 1989). Flavour is usually divided into the subsets of
aroma and taste, which are perceived in the nose and in the
mouth, respectively. Many authors in fact have clearly
demonstrated that the flavour is mainly produced by vola-
tile and phenol compounds (Flath, Forrey, & Guadagni,
1973; Morales, Aparicio, & Rios, 1994), most of which
have been identified and quantified in different extra virgin
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olive oils (Tsimidou, Papadopoulos, & Boskow, 1992;
Vichi et al., 2003).

Lipolysis and oxidation are the processes leading to the
most serious deterioration of olive oil. Lipolysis usually
starts when the oil is still in the fruit, while the oxidation
begins at the processing stage and proceeds during storage
influenced by exposition to air, heat, light and metals.
Though extra virgin olive oil is considered to be a stable
oil due to the presence of natural antioxidants, it is also
susceptible to oxidation (Rovellini & Cortesi, 2002a). Vol-
atile compounds are the main responsible of the pleasant
flavour and change in off-flavours during the storage
(Angerosa, Basti, & Vito, 1999; Morales, Rios, & Aparicio,
1997).

At present the classical methods used to ascertain extra
virgin olive oil quality are based on chemical analysis (Reg-
ulation EEC/2568/91) and sensory analysis (Regulation
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EEC/796/02). However, these methods are expensive and
time consuming.

Recently HPLC/GC–MS was applied to detect changes in
the chemical composition of olive oil during the storage.
HPLC with different detection systems has been used for
hydroperoxide analysis (Oshima, Hopia, German, & Fran-
kel, 1996). GC/MS was used to detect hydroxy fatty acids
and volatile compounds originated from hydroperoxide deg-
radation (Morales et al., 1997) and to identify the products of
triglyceride oxidation (Rovellini, Cortesi, & Fedeli, 1998).

Each of these analyses only gives partial information
about the extent of oxidation and there is a large demand
for rapid, cheap and effective techniques for quality control
of extra virgin olive oils. In recent years, considerable efforts
have been devoted to the development of innovative analyti-
cal instrumentation such as the electronic nose and electronic
tongue, which can mimic the human sense of olfaction and of
taste and provide low-cost and rapid sensory information for
monitoring food quality and state of a process.

The electronic nose consists of an array of gas sensors
with different selectivity, a signal collecting unit and a suit-
able pattern recognition software (Gardner & Bartlett,
1993). It is particularly useful for the quality control in
food or beverage production for monitoring flavour
changes (Bartlett, Elliot, & Gardner, 1997; Jonsson, Win-
quist, Schnuerer, Sundgren, & Lundstroem, 1997; Schwe-
izer-Berberich, Vaihinger, & Gopel, 1994).

In the literature, there are several examples that demon-
strate the possibility of using an electronic nose for the char-
acterization of vegetable oils (Gan, Che Man, Tan,
NorAini, & Nazimah, 2005; Martin, Pavon, Cardero, &
Pinto, 1999) and for the quality control of olive oil aroma
(Guadarrama, Mendz, Saia, Ros, & Olas, 2000), while infor-
mation about the use of an electronic nose to predict shelf
life of vegetable oils or to monitor oil oxidation under real
life storage conditions are not frequent (Shen et al., 2001).

The principle of the electronic tongue is similar to that
of the electronic nose, except for the array of sensors,
which is designed for liquids. Many publications report
the application of the array of electrochemical sensors for
beverage analysis and wine discrimination (Gallardo, Ale-
gret, & Del Valle, 2005; Legin et al., 2003). Olive oils con-
tain some redox active compounds such as polyphenols,
tocopherols, etc. that have an important relevance in their
organoleptic characteristics and antioxidant properties and
could be analysed by means of electrochemical sensors
(Campanella, Favero, Pastorino, & Tommasetti, 1999;
Mannino, Buratti, Cosio, & Pellegrini, 1999).

The aim of the present research is to show how non
destructive techniques in combination with multivariate
statistical analysis can represent an effective device for the
evaluation of the oxidative status of an extra virgin olive
oil. Furthermore, the study has been conducted with the
use of real life storage conditions and not by applying an
accelerated thermoxidation process. In comparison to clas-
sical techniques, this approach could represent a faster and
cheaper recognition tool for monitoring oil oxidation.
2. Materials and methods

2.1. Sample preparation

Fresh and mature olive samples were collected during
years 2001 and 2002, from different cultivars and different
Italian areas. From these olives, 61 mono-varietal samples
of extra-virgin olive oil were properly obtained using a
micro-oil press equipped with a hammer crusher, a vertical
mixer and a two phase decanter (Alfa Laval). Each 2002 oil
sample was divided in two aliquots: the first aliquot was
stored under normal light, the second one under dark for
one year. Instead, each 2001 oil sample was stored for
two years under dark. All the samples were left at room
temperature in 200 ml amber and transparent glass bottles
(dark and light condition).

2.2. Chemical analysis

The chemical analysis included the measurement of sev-
eral parameters. The acidity (acidity), which is indicative of
the free fatty acid content of the oil expressed as oleic acid
(%); the peroxide value (PV), which is a measure of the
amount (meqO2/kg) of the hydroperoxides formed through
oxidation during storage; finally, the absorbances UV at
232 and 270 nm (K232, K270 and DK) provide a measure-
ment of the state of oxidation of the oils. The chemical
analyses were performed in triplicate on each oil sample
before and after storage according to official methods of
the European Commission (Regulation EEC/2568/91).

All the used chemicals and solvents were of analytical
grade.

2.3. Electronic nose

2.3.1. Apparatus

Analyses were conducted with a commercial electronic
nose (model 3320 Applied Sensor Lab Emission Analyser,
Applied Sensor Co., Linkoping, Sweden), comprising three
parts: an automatic sampling apparatus, a detector unit
containing the array of sensors, and a pattern recognition
software. The automatic sampling system supports a car-
ousel of 12 sites for loading the samples and permits the
control of internal temperature.

The sensor array was composed by 22 different sensors.
Ten sensors were metal oxide semiconductor field effect
transistors (MOSFET), 12 were Taguchi type sensors metal
oxide semiconductors (MOS). The MOSFET sensors were
divided into two arrays of five sensors each, one array
operating at 140 �C and the other at 170 �C, while the
MOS sensors were kept at 400–500 �C during all the pro-
cess phases.

2.3.2. Operating procedure
Aliquots of 1 g of each sample were introduced in 40 ml

Pirex� vials with a pierceable Silicon/Teflon disk in the
cap.
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The measurement sequence started with the sample
incubation at 40 �C for 10 min, before injection. After the
headspace generation, volatile compounds were sampled
by an automatic syringe and were pumped over the sensor
surfaces for 60 s. During this time the sensor signals were
recorded. Then sensors were exposed to filtered air at a
constant flow rate (60 ml/min) in order to keep the gas sen-
sor signal back to the baseline.

In a previous work, sample volume, incubation tempera-
ture, time of sampling step, injection time and temperature
optimisation procedures were studied in order to obtain
reproducible responses (Buratti, Benedetti, & Cosio, 2005).
Each sample was evaluated in triplicate and the average of
the results was used for subsequent statistical analysis.

2.4. Electronic tongue

2.4.1. Reagents

Chloroform was obtained from BDH (Poole, England);
acetic acid was purchased from Riedel-de Haen (D-30926,
Germany); hydroxy-2,5,7,8-tetramethylcroman-2 carbox-
ylic acid (Trolox) and tetrabutyl-ammoniumbromide were
purchased from Sigma–Aldrich (St. Louis, Mo, USA).

All solutions were prepared with double-distilled water.

2.4.2. Apparatus

A measurement system based on flow injection analysis
(FIA) with two amperometric detectors was set up.

The FIA apparatus consisted of a Jasco (Tokyo, Japan)
model 880 PU pump and two EG&G Princeton Applied
Research (Princeton, NJ, USA) Model 400 thin-layer elec-
trochemical detectors connected in series. Each detector
was equipped with a working electrode (a dual and a single
glassy carbon electrode, respectively), a reference (Ag/
AgCl saturated) electrode and a platinum counter elec-
trode. The connecting tubes were of peek (1.5 mm
o.d. · 0.5 mm i.d.). Data were recorded using a Philips
(Eindhoven, Netherlands) PM 8252 recorder.

In the flow system, a carrier solution was continuously
pumped through the amperometric detectors and the sam-
ples were injected into the flow stream.

2.4.3. Operating procedure

Flow injection experiments were performed at room
temperature using chloroform containing 2% acetic acid
Table 1
List of the variables considered in the experimentation

No. Variables Variables

Chemical 5 Acidity (%)
Peroxide value (m
Absorbance UV a

E-nose 22 10 MOSFET sens
12 MOS sensors

E-tongue 3 3 Carbon electrod

The number of variables for each typology (chemical, electronic nose and elec
and 3.2% tetrabutyl-ammoniumbromide as carrier solu-
tion. The composition of the carrier solution was chosen
on the basis of a previous work (Mannino et al., 1999).

Flow rate of 1 ml/min and injection volume of 20 lL
were used. No sample preparation was needed except
1:100 dilution with the carrier solution before injection.
Each sample was evaluated in triplicate and the average
of the results was used for subsequent statistical analysis.

Amperometry is based on the oxidation or reduction of
electroactive compounds at the working electrode, when a
constant potential is applied; the measured current (lA) is
a direct measurement of the electrochemical reaction rate.
In the present work, a dual and single glassy carbon elec-
trode in parallel configuration was used. The parallel con-
figuration monitored in oxidative state at potential of +0.5,
+0.6 and +0.8 V (vs. Ag/AgCl).

Furthermore, the FIA technique allows the control of
the sensor drift by using a calibration sample that can be
injected within a measurement series. In our work, the
injection of a trolox standard solution before each oil sam-
ple and the recording of the ratio between the trolox and
the sample signals solved the problem of sensor drift.

2.5. Data analysis

A data matrix with 61 rows (oil samples) and 30 col-
umns (variables) was built. The variable description is pro-
vided in Table 1. Initially, this matrix was analysed by
means of principal component analysis (PCA), in order
to display the structure of the multivariate data. PCA is
a well-known pattern-recognition technique, which pro-
jects the data in a reduced hyperspace, defined by the prin-
cipal components. These are linear combinations of the
original variables, with the first principal component hav-
ing the largest variance, the second principal component
having the second-largest variance, and so on. Since the
variables have been measured in different units, the original
variables were autoscaled.

Afterwards, samples were divided in three classes (see
Table 2) and linear discriminant analysis (LDA) was
applied in order to find a predictive classification model.
LDA is one of the most used classification techniques
(Lachlan, 1992): the method is a probabilistic parametric
classification technique and maximizes the variance
between categories and minimizes the variance within cat-
Code

Acidity
eq O2/kg) PV
t 232 nm, 270 nm and DK K232, K270, DK

ors FE
MO

e (+0.5, +0.6, +0.8 V) (vs. Ag/AgCl) P500, P600, P800

tronic tongue) and the variable code are reported.



Table 2
Class definition

Class code Storage condition Storage period No. samples

Class 1 Dark 1 year 16
Class 2 Light 1 year 16
Class 3 Dark 2 years 29

The storage condition, the storage period and the number of samples of
each class are reported.

Fig. 1. PCA on autoscaled data: score plot. Classes are shown with
different symbols (see Table 2 for class description).
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egories, by means of a data projection from a high dimen-
sional space to a low dimensional space. In this way, a
number of orthogonal linear discriminant functions equal
to the number of categories minus one is obtained. The
classification model was validated using a leave-one-out
procedure. Each sample is removed from the data set,
one at a time. The classification model is rebuilt and the
removed sample is classified in this new model. All the sam-
ples of the data set are sequentially removed and reclassi-
fied. Finally a percentage of correct classification is
calculated. The quality of the LDA classification model
was considered on the basis of the validation results.

Principal component analysis was performed by using
the statistical package SCAN (Minitab Inc., PA, 1995),
and linear discriminant analysis by using SPSS (Inc., Chi-
cago, 2004). The package STATISTICA (Statsoft. Inc.,
Tulsa, OK, 1998) was used for graphics.

3. Results and discussion

The quality of extra-virgin olive oils was ascertained
with the following analytical parameters: acidity, PV,
K232, K270 and DK. As suggested by Regulation EEC/
2568/91, these parameters are valuable olive oil freshness
indices and the following limits for extra-virgin olive oils
are established: acidity 6 0.8, PV 6 20, K232 6 2.4,
K270 6 0.22 and DK 6 0.01 (Regulation EEC/1989/03).

The 61 oil samples, analysed before the storage, widely
respected the limits of the afore-mentioned Regulation, con-
firming a good overall quality: these oils could be labelled as
‘‘extra-virgin’’ according to the European legislation.

Then the samples were analysed after 1 year of storage
under dark (class 1), under normal light (class 2), and after
2 years under dark (class 3). All samples of the three classes
presented an acidity value lower than 0.4, PV from 16 to 20
(class 1), from 17 to 61 (class 2) and from 17 to 39 (class 3).
Except for class 1, most of the samples of class 2 and class 3
had UV values higher then the law limits.

At the end of their storage period, all the oil samples
were also analysed with alternative and innovative tech-
niques (electronic nose and electronic tongue). The
responses obtained with the electronic nose (22 sensors)
and the electronic tongue (three sensors) together with
the classical chemical determinations (five parameters) cal-
culated at the end of the sample storage period were con-
sidered all together and used for statistical analysis.

Initially, the data matrix with 61 rows (oil samples) and
30 columns (variables) was analysed by means of PCA, in
order to study how the different storage conditions charac-
terized the oil samples. The first principal component and
the second principal component were enough to display
the data structure, since they explained 61% of the total
variance. Examining the score plot (see Fig. 1) in the area
defined by the first two principal components, a separation
of the samples into three groups was found according to
the different storage conditions and storage periods. Only
few samples belonging to class 3 were projected in the mid-
dle of class 1, but this does not affect the effectiveness of the
plot.

Furthermore, on the basis of the position of each group
in the plot, it was possible to assign a particular meaning to
each component. The first component was able to separate
the oil samples belonging to class 3 (characterized by neg-
ative values) from all other samples, i.e., the first compo-
nent was able to characterize the samples on the basis of
the storage period.

In fact, samples belonging to class 3 were characterized
by a storage period of two years, while all the other sam-
ples by a storage period of only one year. On the second
principal component, oil samples of class 2 had negative
values, while all other samples had positive values, i.e.,
the second principal component was able to describe the
samples on the basis of the storage conditions. In fact, class
2 samples were stored under light, while all other samples
under dark.

Finally, a sample belonging to class 1 appeared far from
its class space in the score plot. The highest scores on the
first and the second component characterized this sample,
labelled in the score plot as sample no. 10. As described
before, the meaning of each component is related to the
quality of the storage period and conditions. The highest
positive scores on the two components were associated to
the best storage situation, i.e., conservation under dark
for one year. The behaviour of sample no. 10 confirmed
this hypothesis: in fact, all the values of classical chemical
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parameters for this sample respected widely the law limits
and allowed it to be considered as a extra-virgin olive oil.
All other samples of class 1 could be considered as extra-
virgin olive oils but presented PV and UV values near the
law limits.

Since samples were well described in the score plot, the
loading plot was analysed in order to show which variables
influenced the group separation. As can be seen in the load-
ing plot of the first two principal components (see Fig. 2),
the majority of electronic nose sensors characterized the
first principal component, while electronic tongue sensors,
two sensors of electronic nose (FE101A and FE101B), and
the PV were relevant on the second component. First of all,
it is clear how the electronic tongue sensors were correlated
giving the same information, as expected. The two types of
electronic nose sensors (MOSFET and MOS) appeared dif-
ferent, since they grouped in different areas on the second
component.

Furthermore, MOSFET sensors appeared more infor-
mative, since they showed high loading values on both
components. It is important to notice that classical chemi-
cal variables did not appear relevant for the description of
the samples under study. Acidity was placed in the middle
of the loading plot: this variable did not have an impact on
the group separation, i.e., in the description of the storage
period and the storage conditions. Among classical chemi-
cal variables, the PV is the only with a high loading value,
but, as can be seen in the loading plot, two electronic nose
sensors (FE101A and FE101B) were placed close to it. This
means that all these three variables had the same informa-
tion, i.e., the PV could be removed without a decrease of
discrimination capability. In conclusion, electronic nose
sensors and electronic tongue sensors gave sufficient infor-
mation to describe the different storage conditions and
storage periods and appeared to be enough for the charac-
terization of the three classes of oil samples.
Fig. 2. PCA on autoscaled data: loading plot. Variables are shown with
different symbols: electronic nose MOSFET sensors (dark circle), elec-
tronic nose MOS sensors (white circle), electronic tongue sensors and
classical chemical variables (white square).
Since the data structure analysis gave a good sample
characterization, a classification model was built. LDA
analysis was applied in order to find a predictive classifica-
tion model, able to separate the three described classes (see
Table 2). In Table 3, the results of LDA and leave one out
cross validation are reported. As can be seen, LDA applied
to the complete data set gave a recognition percentage of
100%, while only one oil sample was not correctly classified
in the validation procedure. Even if this model performed a
good classification result, the classification after selection
of a minimum number of variables was also considered.
In fact, the PCA loading plot highlighted how the classical
chemical variables did not appear relevant for the class dis-
crimination or appeared correlated to electronic sensors
and nose sensors. For this reason and in order to simplify
the classification model by reducing the number of the con-
sidered variables, LDA was repeated by considering only
the electronic nose and electronic tongue features. The clas-
sification model gave again 100% correct classification for
three classes and only one wrong assignment in the valida-
tion procedure. The discriminant scores for the classifica-
tion model with only the electronic nose and electronic
tongue features (see Fig. 3) showed a clear class separation.
More conclusions can be obtained by observing the plot of
the standardized canonical discriminant function coeffi-
cients (see Fig. 4). In this plot the behaviour and the rule
of each variable in the classification model can be analysed.
It is clear that few sensors had high canonical discriminant
function coefficients and that the electronic tongue sensors
did not show a relevant role in the classification model,
since they were placed in the middle of the plot, close to
the axis origin. This result suggested the possibility of
removing the electronic tongue sensors from the model,
without a decreasing of its classification capability. There-
fore, in order to simplify once more the classification
model, LDA was repeated by considering only the elec-
tronic nose features.

As expected, the classification model gave the same
results as before, i.e., a recognition percentage of 100%,
and only one wrong assignation in the validation
procedure.

Since an equal classification performance was obtained
by considering only the electronic nose sensors, it is evident
that chemical analyses and electronic tongue sensors were
not required in order to achieve a better sample discrimina-
Table 3
Confusion matrix of the LDA classification model with all the variables
(fitting and validation results are both reported)

Classes 1 2 3 Total

Fitting 1 16 0 0 16
2 0 16 0 16
3 0 0 29 29

Cross-validation 1 16 0 0 16
2 0 16 0 16
3 0 1 28 29

Rows represent the true class, columns represent the assigned class.



Fig. 4. LDA classification model with the electronic nose and electronic
tongue sensors: standardized canonical discriminant function coefficients.
Variables are shown with different symbols: electronic nose MOSFET
sensors (dark circle), electronic nose MOS sensors (white circle), electronic
tongue sensors (white square).

Fig. 3. LDA classification model with the electronic nose and electronic
tongue sensors: discriminant scores. Classes are shown with different
symbols (see Table 2 for class description).
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tion, i.e., chemical analyses and electronic tongue sensors
did not improve the classification model.

4. Conclusion

This study evaluated the possibility of differentiate olive
oil samples stored in different conditions and periods by
using innovative analytical techniques, such as the elec-
tronic nose and electronic tongue, in combination with
multivariate analysis.

Chemical parameters and electronic tongue did not
appear as relevant in the LDA classification model. In fact,
it has been showed that by removing chemical analysis and
electronic tongue sensors, the classification performance is
preserved and a more applicable model is obtained. The
final classification model built by means of the electronic
nose sensors was able to describe the samples storage con-
ditions and could represent a simpler, faster, and cheaper
recognition tool, since a minor number of variables must
be determined.

In conclusion, this new approach could offer a valid
alternative to the difficult and time-consuming traditional
analytical methods and could be a useful tool for on line
or routine determination of olive oil storage conditions.
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